FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder.
نویسندگان
چکیده
Disruption of FOXP2, a gene encoding a forkhead-domain transcription factor, causes a severe developmental disorder of verbal communication, involving profound articulation deficits, accompanied by linguistic and grammatical impairments. Investigation of the neural basis of this disorder has been limited previously to neuroimaging of affected children and adults. The discovery of the gene responsible, FOXP2, offers a unique opportunity to explore the relevant neural mechanisms from a molecular perspective. In the present study, we have determined the detailed spatial and temporal expression pattern of FOXP2 mRNA in the developing brain of mouse and human. We find expression in several structures including the cortical plate, basal ganglia, thalamus, inferior olives and cerebellum. These data support a role for FOXP2 in the development of corticostriatal and olivocerebellar circuits involved in motor control. We find intriguing concordance between regions of early expression and later sites of pathology suggested by neuroimaging. Moreover, the homologous pattern of FOXP2/Foxp2 expression in human and mouse argues for a role for this gene in development of motor-related circuits throughout mammalian species. Overall, this study provides support for the hypothesis that impairments in sequencing of movement and procedural learning might be central to the FOXP2-related speech and language disorder.
منابع مشابه
Mapping of Human FOXP2 Enhancers Reveals Complex Regulation
Mutations of the FOXP2 gene cause a severe speech and language disorder, providing a molecular window into the neurobiology of language. Individuals with FOXP2 mutations have structural and functional alterations affecting brain circuits that overlap with sites of FOXP2 expression, including regions of the cortex, striatum, and cerebellum. FOXP2 displays complex patterns of expression in the br...
متن کاملA 785kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis.
We report a child with a 785kb deletion of the 3p14.1p13 region including the genes FOXP1, EIF4E3, PROK2, GPR27 resulting in speech delay, contractures, hypertonia and blepharophimosis. FOXP1 and FOXP2 are transcription factors containing a polyglutamine tract and a forkhead DNA binding domain. They both play a role in the developing human foregut and brain [W. Shu, M.M. Lu, Y. Zhang, P. Tucker...
متن کاملIncomplete and Inaccurate Vocal Imitation after Knockdown of FoxP2 in Songbird Basal Ganglia Nucleus Area X
The gene encoding the forkhead box transcription factor, FOXP2, is essential for developing the full articulatory power of human language. Mutations of FOXP2 cause developmental verbal dyspraxia (DVD), a speech and language disorder that compromises the fluent production of words and the correct use and comprehension of grammar. FOXP2 patients have structural and functional abnormalities in the...
متن کاملThe language-related transcription factor FOXP2 is post-translationally modified with small ubiquitin-like modifiers.
Mutations affecting the transcription factor FOXP2 cause a rare form of severe speech and language disorder. Although it is clear that sufficient FOXP2 expression is crucial for normal brain development, little is known about how this transcription factor is regulated. To investigate post-translational mechanisms for FOXP2 regulation, we searched for protein interaction partners of FOXP2, and i...
متن کاملExpression of FoxP2 during zebrafish development and in the adult brain.
Fox (forkhead) genes encode transcription factors that play important roles in the regulation of embryonic patterning as well as in tissue specific gene expression. Mutations in the human FOXP2 gene cause abnormal speech development. Here we report the structure and expression pattern of zebrafish FoxP2. In zebrafish, this gene is first expressed at the 20-somite stage in the presumptive telenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 126 Pt 11 شماره
صفحات -
تاریخ انتشار 2003